Konza LTER Publications
Dynamic plant–herbivore interactions between bison space use and vegetation heterogeneity in a tallgrass prairie. Remote Sensing. 2023;15(22):5269. doi:10.3390/rs15225269.
. Early detection of wildfire risk in the Great Plains: merging machine learning, landscape metrics, and rich data sources. Department of Biology. 2023;MS Thesis. Available at: https://krex.k-state.edu/bitstream/handle/2097/43444/BrynnNoble2023.pdf?sequence=3.
. Ecohydrological implications of clonal shrub encroachment in tallgrass prairie. Department of Biology. 2023;PhD Dissertation. Available at: https://krex.k-state.edu/handle/2097/43279.
. Ecosystem recovery from chronic fertilization: Biotic mechanisms underpinning soil nitrogen legacies in burned and unburned grasslands. Department of Biology. 2023;PhD Dissertation. Available at: https://krex.k-state.edu/handle/2097/43281.
. Effect of genotypic richness, drought and mycorrhizal associations on productivity and functional traits of a dominant C4 grass. Journal of Plant Ecology. 2023;16(1):rtac045. doi:10.1093/jpe/rtac045.
. Electrolytes on the prairie: How urine‐like additions of Na and K shape the dynamics of a grassland food web. Ecology. 2023;104(1):e3856. doi:10.1002/ecy.3856.
. Emigration and survival correlate with different precipitation metrics throughout a grassland songbird's annual cycle. The Journal of Wildlife Management. 2023;87(3):e22371. doi:10.1002/jwmg.22371.
. Evolutionary lineage explains trait variation among 75 coexisting grass species. New Phytologist. 2023;239(3):887. doi:10.1111/nph.18983.
Exploring global change impacts on plant-plant and plant-microbe interactions of grassland species. 2023;PhD Dissertation. Available at: https://jscholarship.library.jhu.edu/items/09d71f75-13c2-4a97-96ff-228931e9ab29.
. Flux and stable isotope fractionation of CO2 in a mesic prairie headwater stream. Journal of Water and Climate Change. 2023;14(6):1961 - 1976. doi:10.2166/wcc.2023.067.
. Grassland responses to seasonal shifts in water availability. 2023;PhD Dissertation. doi:https://api.mountainscholar.org/server/api/core/bitstreams/a7decffd-ba41-4d12-ae8e-19ce83a2ce3f/content.
. Grazing intensity and fire frequency effects on plant species and community characteristics in a tallgrass prairie ecosystem. Ecosystem Science and Managemen. 2023;MS Thesis. Available at: https://www.proquest.com/openview/27a46cdb27cab47bd99a5c7996b4e6c3/1?pq-origsite=gscholar&cbl=18750&diss=y.
. How low can you go? Widespread challenges in measuring low stream discharge and a path forward. Limnology and Oceanography Letters. 2023;8(6):804-811. doi:10.1002/lol2.10356.
Hymenolepis ackerti n. sp. (Eucestoda: Hymenolepididae) infecting cricetid rodents from the central Great Plains of North America. Revista Mexicana de Biodiversidad. 2023;94:e944927. doi:10.22201/ib.20078706e.2023.94.4927.
. Impacts of riparian and non-riparian woody encroachment on tallgrass prairie ecohydrology. Ecosystems. 2023;26(2):290-301. doi:10.1007/s10021-022-00756-7.
Impacts of woody encroachment on the fate of soil co2 in grassland watersheds. Department of Biology. 2023;MS Thesis. Available at: https://scholarship.miami.edu/esploro/outputs/journalArticle/Impacts-of-woody-encroachment-on-the/991032085205202976.
. Intermittent streamflow generation in a merokarst headwater catchment. Environmental Science: Advances. 2023;2:115-131. doi:10.1039/D2VA00191H.
. Multiple global change drivers show independent, not interactive effects: a long-term case study in tallgrass prairie. Oecologia. 2023;201(1):143–154. doi:10.1007/s00442-022-05295-5.
. Nothing lasts forever: Dominant species decline under rapid environmental change in global grasslands. Journal of Ecology. 2023;111(11):2472-2482. doi:10.1111/1365-2745.14198.
Nutrient addition drives declines in grassland species richness primarily via enhanced species loss. Journal of Ecology. 2023;111(3):552-563. doi:10.1111/1365-2745.14038.
Persistent decadal differences in plant communities assembled under contrasting climate conditions. Ecological Applications. 2023;33(2):e2823. doi:10.1002/eap.2823.
. Phytobiome stampede: Bison as potential dispersal agents for the tallgrass prairie microbiome. PhytoFrontiers™. 2023;3(3):512-517. doi:10.1094/PHYTOFR-01-23-0004-SC.
. Prairie plant communities and their associated phyllosphere fungal communities change across the steep precipitation gradient in Kansas USA, though individual plant species’ phyllosphere communities may not. Department of Biology. 2023;MS Thesis. Available at: https://krex.k-state.edu/bitstream/handle/2097/43453/HannahDea2023.pdf?sequence=12.
. Remotely sensed soil moisture can capture dynamics relevant to plant water uptake. Water Resources Research. 2023;59(2):e2022WR033814. doi:10.1029/2022WR033814.
Repeated extreme droughts decrease root production, but not the potential for post‐drought recovery of root production, in a mesic grassland. Oikos. 2023;1:e08899. doi:10.1111/oik.08899.
. Resource-use strategies of woody plants in grassy ecosystems. Department of Biology. 2023;PhD Dissertation. Available at: https://krex.k-state.edu/items/4a62e6f9-df74-4f77-a9ea-c5a90861690a.
. Riding out the storm: depleted fat stores and elevated hematocrit in a small bodied endotherm exposed to severe weather. . Conservation Physiology. 2023;11(1). doi:10.1093/conphys/coad011.
. Root distributions, precipitation, and soil structure converge to govern soil organic carbon depth distributions. Geoderma. 2023;437:116569. doi:10.1016/j.geoderma.2023.116569.
Seasonal emission factors from rangeland prescribed burns in the Kansas Flint Hills grasslands. Atmospheric Environment. 2023;304:119769. doi:10.1016/j.atmosenv.2023.119769.
. Stronger fertilization effects on aboveground versus belowground plant properties across nine U.S. grasslands. Ecology. 2023;104(2):e3891. doi:10.1002/ecy.3891.
The synergistic response of primary production in grasslands to combined nitrogen and phosphorus addition is caused by increased nutrient uptake and retention. Plant and Soil. 2023. doi:10.1007/s11104-023-06083-7.
Thirty years of increased precipitation modifies soil organic matter fractions but not bulk soil carbon and nitrogen in a mesic grassland. Soil Biology and Biochemistry. 2023;185:109145. doi:10.1016/j.soilbio.2023.109145.
. Traits that distinguish dominant species across aridity gradients differ from those that respond to soil moisture. Oecologia. 2023;201(2):311 - 322. doi:10.1007/s00442-023-05315-y.
. Trajectories and state changes of a grassland stream and riparian zone after a decade of woody vegetation removal. Ecological Applications. 2023;33(4):e2830. doi:10.1002/eap.2830.
Under the weather: mechanisms underlying avian responses to precipitation. Department of Biology. 2023;PhD Dissertation. Available at: https://krex.k-state.edu/handle/2097/43041.
. Using root and soil traits to forecast woody encroachment dynamics in mesic grassland.; 2023. doi:10.2172/2248061.
. Woody removal experiment on kings creek at konza prairie biological station. The Bulletin of the Ecological Society of America. 2023;104(3):1 - 4. doi:10.1002/bes2.2089.
. Age-specific patterns of occurrence, density, and growth of two cyprinid fishes in headwater prairie streams. Southwestern Naturalist. 2022;65(3-4):205-215 . doi:10.1894/0038-4909-65.3-4.205.
. The amazing diversity of Poaceae: trait variation across space, time, and lineage. Department of Biology. 2022;MS Thesis. Available at: https://krex.k-state.edu/items/d0ea3fc8-9c6e-4dab-b1fa-02b0d71029a9.
. Assessing transport and retention of nitrate and other materials through the riparian zone and stream channel with simulated precipitation. Methods in Ecology and Evolution. 2022;13(3):757 - 766. doi:10.1111/mee3.v13.310.1111/2041-210X.13791.
. Belowground traits lack response to chronic nitrogen additions in the tallgrass prairie. Department of Biology. 2022;MS Thesis. Available at: https://libres.uncg.edu/ir/uncg/f/Gora_uncg_0154M_13625.pdf.
. Biogeography of root-associated fungi in foundation grasses of North American plains. Biogeography. 2022;49(1):22-37. doi:10.1111/jbi.14260.
Climate change in grassland ecosystems: current impacts and potential actions for a sustainable future. In: CLIMATE ACTIONS - LOCAL APPLICATIONS AND PRACTICAL SOLUTIONS. 1st ed. CLIMATE ACTIONS - LOCAL APPLICATIONS AND PRACTICAL SOLUTIONS. CRC; 2022:36. Available at: https://www.taylorfrancis.com/chapters/edit/10.1201/9781003048701-4/climate-change-grassland-ecosystems-jesse-nippert-seton-bachle-rachel-keen-emily-wedel.
. Climate legacies and restoration history as drivers of tallgrass prairie carbon and nitrogen cycling. Department of Biology. 2022;PhD Dissertation. Available at: https://krex.k-state.edu/dspace/handle/2097/42101.
. Climate legacies determine grassland responses to future rainfall regimes. Global Change Biology. 2022;28(8):2639-2656. doi:10.1111/gcb.16084.
. Climate legacy effects shape tallgrass prairie nitrogen cycling. Journal of Geophysical Research: Biogeosciences. 2022;127(10):e2022JG006972. doi:10.1029/2022JG006972.
. Climate variability supersedes grazing to determine the anatomy and physiology of a dominant grassland species. Oecologia. 2022;198:345–355. doi:10.1007/s00442-022-05106-x.
. Comparative phylogeography of small mammals across the Great Plains Suture Zone highlights repeated processes of speciation and community assembly coincident with the 100th meridian. Department of Biology. 2022;MS Thesis. Available at: https://krex.k-state.edu/dspace/handle/2097/42395.
. Cross-site comparisons of climate change on drylands in the US Long-term Ecological Research network. BioScience. 2022;72(9):889 - 907. doi:10.1093/biosci/biab134.
Darksidea phi, sp. nov., a dark septate root-associated fungus in foundation grasses in North American Great Plains. Mycologia. 2022;11420164110338(2):254-269. doi:10.1080/00275514.2022.2031780.